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On Fuzzy Probability Theory
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Our main aim from this work is to see which theorems in classical probability theory
are still valid in fuzzy probability theory. Following Gudder’s approach [Demonestratio
Mathematice81(3), 1998, 235-254; Foundations of Physi8, 1663-1678] to fuzzy
probability theory, the basic concepts of the theory, that is of fuzzy probability measures
and fuzzy random variables (observables), are presented. We show that fuzzy random
variables extend the usual ones. Moreover, we prove that for any separable metrizable
space, the crisp observables coincide with random variables. Then we prove the existence
of a joint observable for any collection of observables, and we prove the weak law of
large numbers and the central limit theorem in the fuzzy context. We construct a new
definition of almost everywhere convergence. After proving that Gudder’s definition
implies ours and presenting an example that indicates that the converse is not true, we
prove the strong law of large numbers according to this definition.

KEY WORDS: fuzzy sets; fuzzy probability theory; observables; quantum mechanics;
o-morphisms.

1. INTRODUCTION

Fuzzy set theory was born in 1965 in a paper by Zadeh (1965). He introduced
the notion of a fuzzy set to describe situations in which certain objects belong to
a set “to some extent.” In such a way he opened a possibility of studying sets the
boundaries of which vanish gradually. Such situations are encountered mainly in
“soft” sciences, e.g., psychology, economics, medicine, etc. (Pykacz, 1992).

Beltrametti and Bugajski's approach to fuzzy probability theory is based on
the physical foundation of the theory, as they indicated in their papers (Beltrametti
and Bugajski, 1995a,b). Their representation of quantum mechanics describes
gquantum observables by means of fuzzy random variables on a measurable space
consisting of quantum-mechanical pure states. Moreover, Bugajski (1996, 1998b)
establishes the mathematical foundation of the theory in his papers. Gudder's
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treatment of the theory is slightly different from that of Bugajski and Beltrametti
(see Gudder, 1998, 1999, 2000). In this paper, we will consider Gudder’s ax-
iomatic quantum mechanics approach to fuzzy probability theory, which is based
on the space of all measurable fuzzy sets, and it proved to be very useful not only
in quantum mechanics but also in computer science (Duayak 1999; Gudder,
1998; Ishikawa, 1996). In fact, the most striking feature of standard quantum me-
chanics s that it rarely provides joint observables for pairs of quantum observables
(Bugajski, 1998a), but as we will see, any two fuzzy random variables always have
a joint fuzzy random variable.

The most essential difference between standard and fuzzy probability theory
lies in the notion of random variables they adopt (Bugajski, 1996). Our main
purpose is to clarify the relation between fuzzy and classical probability theory,
and to see which of the theorems in classical probability theory are still valid in the
new developing field of fuzzy probability theory. Gudder (1998, 2000) addressed
this theme in his papers, and we completed some of the work that he mentioned
in these papers. We prove Theorem 4.8 which, besides its theoretical interest, is
used in proving the weak law of large numbers (Theorem 5.5) and the central
limit theorem (Theorem 5.15). The strong law of large numbers (Theorem 5.14)
is proved with respect to a weaker version than Gudder’s standard definition of
almost everywhere convergence for fuzzy observables.

Our proofs of these results are slightly different from those of Gudder (1998,
1999, 2000). The idea is that we use the corresponding theorems in classical
probability theory after representing a sequence of observables by a sequence of
random variables in a larger probability space. In fact, we can prove the theorems
directly but our proofs are much easier. Moreover, in this way the relation between
the classical and fuzzy concepts can be detected easily.

2. FUZZY SETS

Let 2 be a nonempty set. In fuzzy set theory, subsetQ afre replaced by
fuzzy sets where the fuzzy sets are defined as follows.

Definition 2.1(Gudder, 2000). Afuzzy subset 6f Q is a function f : Q —
[0, 1]. We say that a fuzzy seft is crispiff f is an indicator function; that is,
f = |5 for someA C @, where

1 ifweA,

la@) =14 if ¢ A

We sayf C gif f(w) < g(w) for anyw € Q. We identify any setA C Q
with its indicator functionl 5. Hence the system of all fuzzy subsets [( &hn be
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treated as a power set, and crisp fuzzy sets correspond to the usual sets (Gudder,
2000). We thus say that a fuzzy set is a generalization of a set. For a measurable
space{?, A), arandom variablé : Q@ — [0, 1] is calledan effect or a fuzzy event

Thus, an effect is just a measurable fuzzy subse®.oThe set of all effects is
denoted by¢(2, A). For f, g € £(2, A), we definef’:=1—- f, fng:=f-g
andfug:=f+g—f-qg.

Lemma 2.2 (Gudder, 1998). Let f, € £(22, A), n € N. Then|J.~, f, exists in
£(R, A)and

Ufh=1-T]@- f.
n=1 n=1

Definition 2.3. If u is a probability measure orf| .A) and f € £(%2, A), we
define theprobability of f to be its expectatiop(f) = [ f du.

Definition 2.4(Gudder, 2000). Let®, A) and (A, B) be measurable spaces.
A mapping¢ : £(2, A) — E£(A, B) is called ao-morphismif

() ¢(lg) =1n=1land
(i) if fi € £(R, A)is asequence such that f; € £(2, A), then

¢<Z fi) = > ¢(f).

Definition 2.5(Gudder, 2000). If 4, B) is a measurable spacefaobservable
on (2, A)isamapX : B — (2, A) such that

(1) X(A)=1and
(2) if B € B are mutually disjoint, therX(|J B;) = Y X(B;) where the
convergence of the summation is pointwise.

LetB(R) denote the -algebra of all Borel subsets &f. A %B(R)-observable
on (22, A) is simply called ambservablen (2, .A). For an observabl¥, if X(B)
is crisp for everyB € B, thenX is calledcrisp.

Theorem 2.6(Gudder, 2000). If X : B — £(2, A) is a B-observable, then
X has a unique extension tasamorphismX : £(A, B) — £(R, A). If Y : E(A,
B) — £(R2, A) is ac-morphism, then Y B is a B-observable.

In fact, if X:B— &(Q, A) is an observable, then the corresponding
o-morphismX : £(A, B) — (R, A) has the formX(f)(w) := [ f(A)u.(dA),
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wherepu,, : B — [0, 1] is the probability measure defined hy,(B) = X(B)(w)
for everyB e B.

3. OBSERVABLES

It should be noted that any random variable 2 — R generates a (crisp)
observableX : B(R) — £(£2, A) given byX(B) = )A(fl(B); i.e,X(B) = I)A(_l(B).
But the converse does not hold. However, we give in Theorem 3.2 below sufficient
conditions for a crisp observable to represent a random variable. We present here
some noncrisp observables.

Example 3.1. (1) For any noncrisp f € £(2, A), define X; : B(R) —
£(Q, A) by

0 if (0,NB=¢
) f if (0, N B = {1
Xe@B)i=1, 4 if (0, N B = {0}
1 if (0, 1} € B.

ThenX; is a noncrisp observable.
(2) Let f, g be random variables on a measurable sp2ce4), leti < (0, 1),
and letX¢, Xg be the observables generatedyy; i.e.,

Xi(B) = lt-yg),  Xg(B)=lgis VB e B(R).
DefineY : B(R) — £(%2, A) by

Y(B) := AX¢(B) + (1 — 1) Xg(B).
ThenY is an observable which is not crisp.

Theorem 3.2. If A is a separable metrizable space afids thes-algebra of all
Borel subsets oA, and X is a crisp3-observable, then there exists a measurable
function f: Q — A suchthat XB) = It-1(g) forall B € B.

Proof: SinceB is theo-algebra generated by a separable metrizable topology
T 0N A, there exists a metrip on A definingr andr is separable. Hence, there
exists a countable dense subBedf A. For eachn € N, define

1
Bn:z{B:B=Up<d,%>,deD},
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whereU ,(d, €) denotes the open ball centerediawith radiuse. Then| 72, Bn,
k € N is a base forr. Fix w € Q and define the measure, on (A, B) by
1e(B) := X(B)(w). Then construct a sequence of open balls as follows.

(1) SinceA = Jg 5, Bi, we have

1= X(A)() = X ( U a) (@) = > X(Bi)@).

BieB: B eB1

Hence, asX is crisp, there exist8;, € ;1 such thatX(B;,)(w) = 1. Let
AL = Bil-

(2) Similarly, B, isopen and J,-, By is a base for; hence, it covers;,. So
letting B, := {B € [Jn._, Bn: B C B, }, there existsB;, € B, such that
X(Bi,)(w) = 1. Let Ay := Bj,.

(3) Continuing in the same fashion, we get a sequence of oper Ballthat
satisfiesAi 1 € A, X(A)(w) = 1Vi € N,andp(a, b) < £ Va,b e A;.

Now i, ((ioy A) = lim ,(A) = 1. Hence ()2, A) # V. Infact,2, Alisa
singleton subset of since ify1, y2 € (721 Ai, 1 # Y2, andl := p(y1, y2), then
| > 0; so pickn € N such that'z > 1 Since(2; Al € An, we getp(ya, y2) <

n
1 <, acontradiction. Thudy, € A 5 N A = {y.}

We have proved thatw € 2, 3y, € A such thatX({y,,})(w) = 1. Note that
suchy,, is unique with respect to the property th&({y,})(w) = 1, since if
there exist two such elemenys, y» € A corresponding to the samag then 1>
X({y1, y2)(@) = X{y1}) (@) + X({y2})(w) = 2, a contradiction. Now definé :
Q — A suchthatf (w) = y,. Thenf ismeasurable. To prove this, Bte 5. Then
f~1(B) = {w: X(B)(w) = 1}, since ifw € f~1(B) for somew € Q then f (v) €
B and henceX(B)(w) > X({ f(»)})(w) = 1. Thereforew € {w: X(B)(w) = 1}.
On the other hand, it € {w: X(B)(w) = 1}, then f(w) € B since otherwise,
X(B U {f(w)}) = 2, a contradiction. Hencé~1(B) = {w: X(B)(w) = 1}, which
is measurable sinc¥(B) is measurable.

To prove thatX(B) = | -1y VB € B, letw € Q. ThenX(B)(w) is either 0
or 1 sinceX is crisp. Now if X(B)(w) = 0, thenw ¢ f~1(B) and| t-1(g)(w) = 0,
and if X(B)(w) = 1, thenw € f~1(B) andlfa@g(w)=1. O

A separable topological space is calledlishif there is a complete metric
defining its topology. Thus, as a consequence of the above theorem, we obtain the
following result, which appears in Bugajski (1998b).

Corollary 3.3 (Bugajski, 1998b). If A is a Polish space an#f is thec-algebra
of all Borel subsets ofA, and X is a crispB-observable, then there exists a
measurable function f Q@ — A such that XB) = | 1-1g).
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The condition that the spacde be separable and metrizable in Theorem 3.2
is essential to identify crisp observables with random variables, as the following
example shows.

Example 3.4. Let A be an uncountable set and telbe the cocountable topology
on A. It is well known thatr is neither separable nor metrizable. Létbe the
o-algebra generated by. Then A is the set of all subsets of that are either
countable or whose complements are countable. Definel — £(R, B(R)) by
X(B) := Iy for a countableB € A and X(B) := Ig for an uncountabld3 € A.
Although it can be easily checked thétis a crisp observable, there is no random
variable that corresponds to it. Indeed, if there exists a measurable furfction
R — A such thatX(B) = | ;-1 ¥B € A, thenf ~1(B) is eitherR or } VB € A,
which implies thatf must be of the fornf (w) = cVw € R for somec € A. Hence
X({c}) = Ig, a contradiction.

Let (22, .A), (A1, B), (A2, B') be measurable spaces and Mt 5 —
E(Az, B)andX : B — £(%2, A) be observables. In classical probability theory,
we can compose any two random variables easily under composition of functions.
In fuzzy probability theory, we can compose any two observafleend Y if
they are thought of as-morphisms (Gudder, 1999). Doing this, we have éhe
morphismX oY : £(A1, B) — £(R2, A) which is identified with the observable
XoY:B— &(2,A). We then have

(X o Y)(B)@) = [X(Y(B)I(w) = /Y(B)(k)uw(d)\) (CHY

where 1, is the probability measure defined by the observakjeand X is
the uniques-morphism that extends the observablgo £(Az, B') as given in
Theorem 2.6.

4. JOINT OBSERVABLES

In this section, we continue to present some basic important facts about ob-
servables. The major result of this section is Theorem 4.8, which generalizes
Theorem 4.1 of Gudder (1998) and will be used in the next section in proving the
weak law of large numbers and the central limit theorem.

Definition 4.1(Gudder, 1998). Let, .4) and (A, B) be measurable spaces. If
w is a probability measure 019 .A) and X is aB-observable ons¢, A), thenthe
distribution of Xis the probability measurex on B given by

1x(B) := u(X(B)).

Note thatux (B) is interpreted as the probability thdthas a value ilB when
the system is in the staje
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Definition 4.2(Gudder, 1998). Le be an observable o} .4) and letu :
R — R be a Borel function. We define

(1) the observabla(X) : B(R) — £(S, .A) by u(X)(B) = Xu~Y(B)),
(2) theexpectatiorof X by E(X) = [ Aux(d2), and
(3) thevarianceof X by

2
Var() = E0) ~ [ECOF = [ 22ux(@n) - [ / )»Mx(d)»):| .

Lemma 4.3 (Chebyshev; Gudder, 1998)Let X be an observable on a proba-
bility space(2, A, P) and u: R — R be an increasing nonnegative function. If
U(A.) > 0,then

E(u(X))
u(ro)

P(X > A,) = P[X([o, 20))] <

Definition 4.4. Let X4, ..., X, be observables oif), .A). We say that &(R")-
observableX on (22, A) is theirjoint observablef

m(X)ZXi, i:l,...,n,

wherer; is the marginal projection map. For finite collections of observables, we
have the following theorem.

Theorem 4.5(Gudder, 1998). If X4, ..., X, are observables o2, A), then
there exists a unique n-dimensional observable Z(@n.A) such that for all
By, ..., B, € B(R),

Z(By x - -+ x Bp) = X1(By) - - - Xn(Bn). 4.1)
Note that condition 4.1 is essential for the uniqueness of the joint observable
Z, as the following example indicates. This example can be found in Bugajski

(1996), and it has a direct connection to the quantum mechanical description of
spin- objects.

Example 4.6. Let Q denote the set of points of the unit sphereRifand let
w1, w2 € Q. DefineB(R)-observableX,,,i = 1, 2 on €, B(Q)) by

0 if2¢B,—1¢B
(1471, 1,) if3eB,—1¢B
$1-r,-r,) if —3€B,3¢B

1 if 2, —3 € B,

X (B)(@) =
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wherer,, is the unit vector ofR® pointing tow. Now define a#B(R?)-observable
X on (2, B(2)) generated by

(@ e
)}) @ -
o
)

)@»=M@—%0m+mgww

11 1 1 11 1 1
X | R2 i g _ .z B =
(\G2) G2) (22) (22))Jo-o
wherei(w) may be one of the following two functions:

(l) )"1((9) = %(l + T, - rw)(l T, - rw)‘
(2) ra(w) =min{3(L+ 1y, 1), 3(1 4w, To)h

In each caseX is a joint observable oK, , X.,. Hence we have two different
joint observables for the same observabtgs, X,,.

(1470 To) — Ma),

(14r0, 1) — AMo),

NI NI

Definition 4.7(Gudder, 1998). LeKjy,..., X, be observables on a probability
space (2, A, P). Then the probability measufex, ... x, onB(R") given by

Uxy,... x(B) = nz(B) = P(Z(B)),
whereZ is given by Eq. (4.1), is called theint distributionof X4, ..., X.

We now extend Theorem 4.5 to any collection of observables. But first we
need to establish some notation about infinite product of probability spaces. Let
{(Q, Agy to): @ € A} be a family of probability spaces arsel= [] €2,. Recall
(see Bauer, 1981) that tipgoducto-algebralf of theo-algebrag A,: @ € A} is
the smallest -algebra orf2 with respect to which each of the projection mappings
. iIsU-Ay,-measurable. We denote the prodaealgebral/ by

U= A

aeA

By Theorem 5.4.2 of Bauer (1981), there exists a unique probability measure
onl such that

M <1_[ thi X l_[ Qa) = Mozl(Boq) ce //Lan(Ban)
i=1
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for all By, € Ay,,i =1,...,n, and for alln € N. The measurg: is called the
product measuref the probability measurds.,: « € A} and is denoted by

M=®Ma-

aeA

Theorem 4.8. Letl{ be the productr-algebra®), ., B(R) for some index set
A.If X, a € A are observables on a measurable spéRe.A), then there exists
a uniquel/-observable Z o012, A) such that

n

(*) VA <1_[ BOti X l_[ Ra) = XO(l(BOll) T Xotn(Bozn)l
i=1 on

whereR, =R forall o € A.

Proof: Fix w € Q. For eachr € A, define a probability measuye, , onB(R)
by
Hoa(B) = Xa(B)(@) VB € B(R).

Then, by Theorem 5.4.2 of Bauer (1981), there exists a unique probability measure
o = Quea Mo, the product measure af = Q, ., B(R), such that for all
By, - - - Bg, € B(R), we have

Mo (l_[ Boti X l_[ R(x) = Mw,al(Bal) e /‘Lw,an(Ban)' (42)
i=1

Now defineamapping : U — £(R2, A)by Z(B)(w) := 1(B)VB € U.Toprove
that Z is an observable, we need to prove, first, tAéB) is an effectvB e U.
It is clear thatZ(B)(w) € [0, 1] Yo € Q. To prove thatZ(B) is measurable, let
B :={B € U: Z(B) is measurablg and let

aeA

n
S = {HBM X l_[ Ry By, eEB(R)forallal,...,aneA}.

i=1 aFA,...,0n
It is well known thatS generate$/. We also have thaf C B. In fact, if B =

Z(B)(a)) = Mw(B) = /-'Lw,utl(Batl) t Mw,an(Ban)
= Xay (B ) (@) -+ Xap (Bay ) ().

But X,, is measurabl&i = 1,...,n. HenceZ(B) is measurable. We also have
that if
n m
B=[]B, x ]_[ Ry, B’:HBa{x ]_[ R, € S,
i=1 aF#ay,...,0n i=1 Q..o
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then, by lettingd = {ay, ..., anyUfag, ..., a),}, we have
BNB =] ]((B)N7a(B)) x [ [Ra € S.
aeld agd
HenceS is N-stable. Therefore, by Theorem 1.2.4 of Bauer (1981),
8(S) = o (S) = U, (4.3)

whered(S) denotes the Dynkin system generated®gndo (S) denotes the -
algebra generated . But B is a Dynkin system, since it satisfies the following:

(1) Z(1,ea R) = 1.
(2) ForB € B, we haveZ(B) is measurable, hence, as

Z(BY)(®) = u(B) = 1— pu(B) = 1- Z(B)(®) Yo € Q,

it follows that Z(B€) is measurable; therefo&* € B.
(3) Let B; € B be a pairwise disjoint sequence. Then for every Q, we

have
z (U Bi> (@) = to (U Bi) =  1o(B)

=Y Z(B)) =lim) Z(B)(w), (4.4)
i=1

which shows thaZ (| J B;) is measurable; hendg B; € 5.
We conclude tha$(S) € B. Then, from Eq. (4.3), we haug C B. Hence
Z(B) is measurable for eadB € /. We also have from (1) and Eq. (4.4) thats

al{-observable. The uniquenessdbfollows from the uniqueness of the product
measures,. 0O

Definition 4.9. We say that

(1) f,g€ &(R, A) are independentf they are independent as random
variables;

(2) fi € £(22, A)arepairwise independeiitt f;, f; are independemti # j;

(3) fi € £(R2, A) areindependenit they are {otally) independenas random
variables.

If f,ge &(R,.A)areindependent and(g) # 0, then
n(tg) = E(fg) = E(f)E(9) = n(f)u(9).

Definition 4.10. Following (Gudder, 1998), a sequenXe of observables on a
probability space, A, P) is said to be pairwise independenif the sequence
Xi(By) is (pairwise) independent for all possible choice$Bf in B(R).
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It is clear that ifX; are (pairwise) independent observables andR — R
are Borel functions, theu; (X;) are also (pairwise) independent.

Let X, Y be independent observables dn, (4, P), and letux y be their
joint distribution. Then for ever,, B, € B(R), we have

ux,y(B1 x Bp) = P(X(B1)Y(B2)) = P(X(B1))P(Y(B2)) = mx(B1)mv(By).

5. INFINITE SERIES OF OBSERVABLES

In this section we will show that certain theorems on infinite series of ob-
servables, namely, the weak and strong laws of large numbers and the central limit
theorem, are still valid in the fuzzy probability setting.

Proposition 5.1. Let X, Xy, ..., be identically distributed and (pairwise) in-
dependent observables on a probability sp&ee.A, P) and let Z be their unique
joint observable as defined in TheordmBand .z be the distribution of Z. Define
the randomvariableson(J12; R, @2, B(R), z) by Ye((xi)2,) = Xk, k € N.
ThenY,i € N, are identically distributed and (pairwise) independent.

Proof: Applying Theorem 4.8, we have

z (lj B, x [] }Ra> = Xay (Buy) -+ X (Bay)-

aF#aAq,...,0n
Hencevn € N, if B € B(R) andpuy,(z) is the distribution ofYy,, then

1vy2)(B) = nz(Y,1(B)) = P( <1‘[R. x B x H R))

i=n+1
= P(Xn(B)) = ux,(B).

Hencevn € N, Y,, and X, have the same distribution. As th&’s are identically
distributed, so are th¥,’s. We also have that th¥,’s are independent since the
Xn's are independent. In fact, sineg,i € N, are independent, i € N, By, €

B(R),i =1,...,n, then
uz (ﬂ ka(Bm)) P (Z (H B AL k))
P (H in(Bki)> =E (]j xki(BK)>

i=1
i=1

n
H (Xk (Bx)) ]_[Mxk Bx) ]_[uvh(z) Bx.)-

=1
Similarly, if the X;’s are pairwise independent then so areYhs. O
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Corollary 5.2. Let X, X», ..., beidentically distributed and integrable observ-
ables on a probability spadg2, A, P)andlet Zand Y, Y, ..., be as defined in
Proposition5.1. Then we have

(1) if X1, X5, ..., are pairwise independent, then
1 n
=3 (Y - E(Xy)
n i=1

converges t® in probability with respect to Pand
(2) if X1, X, ..., are independent, then

1 n
=3 (Y - E(Xy)
n i=1
converges t@ almost surely with respect to P.

Proof: Part (1) follows easily from Proposition 5.1 and the weak law of large
numbers in classical probability theory, and part (2) follows from Proposition 5.1
and the strong law of large numbers in classical probability theory.

In what follows we will denote byX,, — X| the observable(Z) generated
by the functioru : R? — R defined byu((x, y)) = |x — y| on the joint observable
Zx, x of Xpn, X, whereZy, x is uniquely determined by Eq. (4.1).

Definition 5.3(Gudder, 1998). LeK, X5, n=1,2,..., be observables 015,
A, P). We say thaiX, converges to X in probabilitif for everye > 0, we have

lim P(|X, — X| > €) =lim P(| X, — X|([e, 00))) = 0.
Recall that ifX is an observable generated by a measurable fundtjdinen
X(B) = |f—1(B) VB € %(R)

Lemma 5.4. Let X, X be observables on a probability spa€e, A, P), where
X¢ is generated by a constant function=fc onR and let Z,, n € N, be their
joint observable as defined in Theordrd. Then for alle > Oand allne N,

1Xn = Xel([€, 00)) = Xn((—00, € — €] U [C + €, 00)). 6.1

Moreover, if for everye > 0, lim ux, ((—oo, ¢ — €] U[Cc+ €, 00)) = 0, then X,
converges to Xin probability.

Proof: Let Z, be the joint observable of,,, X. as defined in Theorem 4.5 and
letu:RR? — R be defined byi((x, y)) := |x — y|. Then for every > 0,

(*) lim P(|Xn — X¢| > €) = lim P(u(Zy))([e, 00))
= lim pz,(u([e, o))
=limuz,({(x, ¥): X,y €R, [X —y| > €}).
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Now sinceX; is the observable generated by a constant funcfieac, ¢ € R,
then forB € B(R) andw € €,

1 ifceB,
0 otherwise

Xe(B)(@) = lt-1(gy(@) = {

Hence, forBy, B, € B(R) andw € 2, we have

Xn(B1)(w) if ¢ € By,

Zn(B1 x Bp)(w) = Xn(B1)(@)Xe(B2)(w) = {0 otherwise

Thus, ifB € B(R?) andc ¢ m2(B), thenuz,(B) = 0; hence, iflG = R x {c}, then
Zn(BN G = 0 and soZ,(B) = Z,(B N G). It follows that for every > 0 and
for everyn € N, we have

IXn = Xcl([€, 00)) = Zn(({(X, ¥): X = y| = €}) N G)
= Zn({(x, ©): X — €| Z €}) = Zn((X: X — c[ Z €) x {c})
= Xn((—o00,c— €] U[C+ ¢, 00)).
Hence, this andx) yield that for everyg > 0,
lim P(| X, — X¢|([€, 00))) = lim P(Xn((—o00, € — €] U[C + €, o0))),

and therefore the second assertion of the lemma now follows.

Inwhat follows we denote the observablg, — X;|, as definedinthe previous
lemma, by| X — c| for simplicity.

Theorem 5.5(Weak Law of Large Numbers).Let Xi, Xo, ..., be a sequence

of integrable, identically distributed and pairwise independent observables on
a probability space(2, A, P) and let § = s,(Z,) where §:R" — R is de-
fined by §((x1, ..., Xn)) = %(xl +---+ Xy) and Z, is the unique joint observ-
able of X, ..., Xy, as defined in Theored5. Then § converges to EX;) in
probability.

Proof: Let Xy, Xo, ..., be a sequence of integrable, identically distributed and
pairwise independent observables 6h (4, P) and letZ be their joint observ-
able. LetYy, Yo, ..., be the random variables defined in Proposition 5.1. Then by
Corollary 5.2,

%Z(Yi — E(X1))
i=1
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converges to 0 in probability with respect® Hence, for every > 0,

0= tim uz ({ﬁR })

=IlimP <Z ([X € ﬁR: %iYi(x) & (E(Xy) — ¢, E(Xl)—i—e)})) .
i=1 i=1

(5.2)

3 Y00~ E(x)
i=1

Now let B, := (—oo, E(X1) — €] U[E(X1) + €, 00). We claim thatvn € N,
S\(B.) == Zn(S1(B.))

Zn ([(xl,...,xn) e R™ %ixi € Bo})
i=1
Z({xeﬁR:%Xﬂ:Yi(x)eBoD. (5.3)
i=1 i—1

To prove the claim, let

Anz{(xl,...,xn)eR“:%;xi € BO},

D, = {x EQR: %iX:;Yi(x)e Bo}.

Thenitis clear thaD, = Ay x [[2,,,1 R. SinceVw € 2, Z,(B)(w), B € B(R"),
determines a measure, we have fomadt N that

Zn(An)(w) = inf {i Zn(C)(): A < GG
i=1

=Ci1x---xCp,GCj e ‘B(R)}

j=1

inf {ilﬂ[Xj(Cij)(w): An C Ucii Ci
i=1

= Cj1 x --- x Cjp, Cij € %(R)}
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= inf i]ﬂ[xj(c.,)(w) Dn C Uc(,c’
= ﬁCi,— X ﬁ R, Cij G%(R)},

j=1 j=n+1

which is exactlyZ(D,)(w) according to Theorem 4.8. This proves the claim.
Hence, by Eq. (5.2) and (5.3), we have

lim ps,(Bs) = lim P(S(B.))

= lim P(Z ({xeiljR:%il:Yi(x) € BO}>> =0

It follows from Lemma 5.4 thatS, converges toE(X;) in probability, as
desired. O

Notice that the observablg, of the above result is not identically distributed
with the observabl&, onB(R) defined byS,(B) := % >, Xi(B).IndeedyB e
B(R) andvn € N, we have

18 18
S(B) =~ ; Xi(B) =~ ; X1(B) = Xa(B);
henceS, — S, = Xy, while § — E(Xy) in probability.

Definition 5.6. Let fy, fp, ..., be a sequence of effects dn,(A). We define

lim supf, := ﬂ U fr.

k=1n=

Lemma 5.7 (Gudder, 1998). Let f, be a sequence of effects ¢f, A, P).
Then

(1) U fn exists and is ir€($2, A), and|J fn # 1iff Y fn < oo,
(2) limsupf, exists and is Ir£ (2, A).
Lemma 5.8 (Borel-Cantelli Lemma; Gudder, 1998)Let f, be a sequence in

(2, A) and let g= limsup f.

(1) If Y- P(fn) < oo, then Rg) =
(2) If Y P(fy) = oo and the § are independent, then(B) = 1.
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Definition 5.9(Gudder, 1998). LeK, X,,n=1, 2,..., be observables o1,
A, P). We say thalX,, converges to X almost surdfyfor everye > 0, we have

P[lim sup( X, — X|>¢€)] = P[lim sup(Xn — X]|([¢, o0)))] = O.

Recall that

lim sup(Xa — X|([e, 00))) = [ | <1— [ = (X = Xi(le, oo)»]) :

k=1 n>k

Lemma 5.10(Gudder, 1998). If X, is a sequence of independent observables
on (2, A, P),c € R, and X, converges to ¢ almost surely, thep éonverges to
¢ in probability.

The question about the validity of the strong law of large numbers in the
setting of fuzzy probability theory still needs an answer. In fact, we can weaken the
definition of almost everywhere convergence for a sequence of observablesin fuzzy
probability theory which is what we will call almost everywh&pmmnvergence of
a sequence of observables. Then we prove our version of the strong law of large
numbers according to this definition (see Theorem 5.14 below).

Definition 5.11. Let X, X,,n =1, 2,..., be observables o8, A, P). We say
that X, converges toX almost everywhereif Ve > 0,

limP <sup| Xk — X|([e, oo))> =0

k>n

where the supremum is defined as in the usual sense for sequences of functions.

Remark 5.12. The two definitions of almost everywhere convergence and almost
everywheré&convergence coincide for crisp observables and hence inthe usual case
of random variables. But they are not equivalent in general. In fact, the concept of
almost everywhere convergence has a very strong condition. To see this, suppose
that X,, is a sequence of observables that converges almost everywhere to the
observableX. Thenve¢ > 0, we have

/1‘[ (1— 1@~ 1% XI(e, oo)))) dP =0,

k>n

which implies thaBA € A such thatP(A) = 1 andvVw € A,

[1 (1 = [T = X = XI(Ce, oo)))) (@) =0.

n k>n
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Hence, by the theory of infinite productsy € A, we have

DT = Xk = X|([e, 00)))(@) = 00 Vo € A.
n k>n
ThenVow € ©,3n, € N such thaf ], (1 — [Xk — X]([¢, o0)))(w) # 0. Again,
by the theory of infinite product¥w € A, we then have
D Xk = XI([e, 00))(@) < o0.

k>n,,

HenceYw € A, we have
Y 1Xa = X|([e, 00))(@) < o0, (5.4)
n=1

which is a very strong condition. Moreov&fiy € A, it leads to
lim sup Xn — X|([¢, 00))(w) = O;

and henceX,, converges almost everywhéte X. Thus the definition of almost ev-

erywhere convergence implies the definition of almost everyvitemavergence.
The following example shows that the two definitions of almost everywhere

convergence and almost everywhecenvergence are not equivalent.

Example 5.13. Let (2, A) = (R, B, (R)) and letP be any probability measure
on B (R). Define a sequence of observab¥gson (2, A, P) by

0 ifO¢ B, 1¢ B,
1 ifleB,0¢B,
Xn(B)(@) = ;_1 ifl¢B,0cB
n ' ,

1 otherwise.

Let X be the observable generated by the random varidbl& — R such that
f(w) = 0 Vo € Q. Then X, converges toX almost everywhere To see this, let
€ > 0 be given. Then, by Lemma 5.4,

1
[Xn = X|([e, 00)) = Xn((—00, —€] U[e, 00)) = —.
Hence,P(inf, sug.,|Xx — X|([¢, 00))) = 0. But X, does not converge tX al-
most everywhere. To see this, suppose on the contraryXhabnverges taX
almost everywhere. Then by Inequality 534 € A such thatP(A) = 1 and such
thatVew € A, we have

Y 1Xn = X|([e, 00))(@) < oo.
n=1
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But, Vo € A, we have

> X = Xiffe, o)) = 3 T =0

n=1 n=1

a contradiction.

Now we will prove our version of the strong law of large numbers according
to the definition of almost everywhereonvergence.

Theorem 5.14(Strong Law of Large Numbers).Let X, Xo, ..., be asequence
of integrable, identically distributed and independent observable&xnm, P)
and let § = s,(Zn) where § : R" — R is defined by g(Xy, . .., Xn)) = (X1 +
<-4+ Xy) and Z, is the unique joint observable of X .., X,, as defined in
Theorem.5.Then § converges to EX;) almost everywhete

Proof: Definethejointobservabl&of X, X5, ...asinthe proof of Theorem 5.5
(Weak Law of Large Numbers). And follow the proof to get the sequence
Y1, Ya, ..., of identically distributed random variables of[{C; R, &=, B(R),
uz)with expectatiomm. Then, by Proposition 5.%;, Yo, .. ., are also independent
and identically distributed. Hence, by Corollary 5.2, we have

%Zm—amx
i=1

which converges to 0 almost surely with respecPtd_et m = E(X;). Then for
everye > 0 we have that
> e}) =0.

o0
wz (Iim sup{x € R:
j=1

1 n
E;Yi(x)_m

Hence,

€ (—oo,m—e]U[m+e, oo)}) .
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Now letw € Q. Then by Eq. (5.3),

(ﬂU{ ]‘[ kZY.(x)e(oom—e]U[m—i—eoo)})(w)

=IimZ(U{erR Zv.(x)e( oo, m—elU[m+e, oo)})(a))

k=i i=1

> lim supZ ({XGHR Zv.(x) € (—oo,m—e]U[m+e, oo)})(w)

k>n i—1

k
= Iinm supZy ({x € HR: (X)) € (—oo,m—e€]U[m+e, oo)}) (w).

k>n j=1

Hence,

K
P (Iinm supZy ({x e [[R: s(X) € (—oo,m—e]U[m+e, oo)}))

k>n j=1
e}) - O’

and, therefore, the strong law of large numbers holds.

o0

5#z<ﬁ@{ ]_[

i=1

Theorem 5.15(Central Limit Theorem). Let X, be a sequence of independent,
identically distributed observables with expectation zero and variace 0. Let

S = si(Zn) where § : R" — R is defined by, g(X1, . . ., Xn)) = a—jﬁ(xl 4o
Xn) and Z, is the unique joint observable ofi X . ., X;, as defined in Theorem5.
Letu, be the distribution of S Thenu, converges weakly to, , whereu, denotes
the normal distribution with expectatidhand variancel.

Proof: Following the proof of Theorem 5.5 (Weak Law of Large Numbers), we
construct the sequence of independent, identically distributed random vaiNables
of expectation zero and varianeé. For eacm € N, let T, = a_\lm(Yl +--4+Yn)

and letu;, denote the distribution oF,. Then by central limit theorem in classical
probability theory, we have., converges weakly to the normal distribution of
expectation 0 and variance 1. Now by a similar proof to Eq. (5.3), we can get
VB € B(R) that

Si(B):= Zn(s,(B)) = Zy ({(xl, oo Xp) € R™ G—j/ﬁ Z;‘xi € B})
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o9} 1 n
=Z|ixe| R ——=) Y(x) e B} | =Z(T, }B)).
E O'\/ﬁ; [ (n )
Then,VB € B(R), we have

un(B) = P(Si(B)) = P(Z(T, (B))) = uz(T,(B)) = 1'(B).

Hence,u, and ., are also identically distributed, and therefqrg converges
weakly to the normal distribution with expectation 0 and variance(d.
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