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Our main aim from this work is to see which theorems in classical probability theory
are still valid in fuzzy probability theory. Following Gudder’s approach [Demonestratio
Mathematica31(3), 1998, 235–254; Foundations of Physics,30, 1663–1678] to fuzzy
probability theory, the basic concepts of the theory, that is of fuzzy probability measures
and fuzzy random variables (observables), are presented. We show that fuzzy random
variables extend the usual ones. Moreover, we prove that for any separable metrizable
space, the crisp observables coincide with random variables. Then we prove the existence
of a joint observable for any collection of observables, and we prove the weak law of
large numbers and the central limit theorem in the fuzzy context. We construct a new
definition of almost everywhere convergence. After proving that Gudder’s definition
implies ours and presenting an example that indicates that the converse is not true, we
prove the strong law of large numbers according to this definition.

KEY WORDS: fuzzy sets; fuzzy probability theory; observables; quantum mechanics;
σ -morphisms.

1. INTRODUCTION

Fuzzy set theory was born in 1965 in a paper by Zadeh (1965). He introduced
the notion of a fuzzy set to describe situations in which certain objects belong to
a set “to some extent.” In such a way he opened a possibility of studying sets the
boundaries of which vanish gradually. Such situations are encountered mainly in
“soft” sciences, e.g., psychology, economics, medicine, etc. (Pykacz, 1992).

Beltrametti and Bugajski’s approach to fuzzy probability theory is based on
the physical foundation of the theory, as they indicated in their papers (Beltrametti
and Bugajski, 1995a,b). Their representation of quantum mechanics describes
quantum observables by means of fuzzy random variables on a measurable space
consisting of quantum-mechanical pure states. Moreover, Bugajski (1996, 1998b)
establishes the mathematical foundation of the theory in his papers. Gudder’s
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treatment of the theory is slightly different from that of Bugajski and Beltrametti
(see Gudder, 1998, 1999, 2000). In this paper, we will consider Gudder’s ax-
iomatic quantum mechanics approach to fuzzy probability theory, which is based
on the space of all measurable fuzzy sets, and it proved to be very useful not only
in quantum mechanics but also in computer science (Dunyaket al., 1999; Gudder,
1998; Ishikawa, 1996). In fact, the most striking feature of standard quantum me-
chanics is that it rarely provides joint observables for pairs of quantum observables
(Bugajski, 1998a), but as we will see, any two fuzzy random variables always have
a joint fuzzy random variable.

The most essential difference between standard and fuzzy probability theory
lies in the notion of random variables they adopt (Bugajski, 1996). Our main
purpose is to clarify the relation between fuzzy and classical probability theory,
and to see which of the theorems in classical probability theory are still valid in the
new developing field of fuzzy probability theory. Gudder (1998, 2000) addressed
this theme in his papers, and we completed some of the work that he mentioned
in these papers. We prove Theorem 4.8 which, besides its theoretical interest, is
used in proving the weak law of large numbers (Theorem 5.5) and the central
limit theorem (Theorem 5.15). The strong law of large numbers (Theorem 5.14)
is proved with respect to a weaker version than Gudder’s standard definition of
almost everywhere convergence for fuzzy observables.

Our proofs of these results are slightly different from those of Gudder (1998,
1999, 2000). The idea is that we use the corresponding theorems in classical
probability theory after representing a sequence of observables by a sequence of
random variables in a larger probability space. In fact, we can prove the theorems
directly but our proofs are much easier. Moreover, in this way the relation between
the classical and fuzzy concepts can be detected easily.

2. FUZZY SETS

Let Ä be a nonempty set. In fuzzy set theory, subsets ofÄ are replaced by
fuzzy sets where the fuzzy sets are defined as follows.

Definition 2.1(Gudder, 2000). Afuzzy subset fof Ä is a function f : Ä→
[0, 1]. We say that a fuzzy setf is crisp iff f is an indicator function; that is,
f = I A for someA ⊆ Ä, where

I A(ω) =
{

1 if ω ∈ A,

0 if ω /∈ A.

We say f ⊆ g if f (ω) ≤ g(ω) for anyω ∈ Ä. We identify any setA ⊆ Ä
with its indicator functionI A. Hence the system of all fuzzy subsets [0, 1]Ä can be
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treated as a power set, and crisp fuzzy sets correspond to the usual sets (Gudder,
2000). We thus say that a fuzzy set is a generalization of a set. For a measurable
space (Ä,A), a random variablef : Ä→ [0, 1] is calledan effect or a fuzzy event.
Thus, an effect is just a measurable fuzzy subset ofÄ. The set of all effects is
denoted byE(Ä,A). For f, g ∈ E(Ä,A), we definef ′ := 1− f, f ∩ g := f · g
and f ∪ g := f + g− f · g.

Lemma 2.2 (Gudder, 1998). Let fn ∈ E(Ä,A), n ∈ N. Then
⋃∞

n=1 fn exists in
E(Ä,A) and

∞⋃
n=1

fn = 1−
∞∏

n=1

(1− fn).

Definition 2.3. If µ is a probability measure on (Ä,A) and f ∈ E(Ä,A), we
define theprobabilityof f to be its expectationµ( f ) = ∫ f dµ.

Definition 2.4(Gudder, 2000). Let (Ä,A) and (3, B) be measurable spaces.
A mappingφ : E(Ä,A)→ E(3, B) is called aσ -morphismif

(i) φ(IÄ) = I3 = 1 and
(ii) if fi ∈ E(Ä,A) is a sequence such that

∑
fi ∈ E(Ä,A), then

φ
(∑

fi
)
=
∑

φ( fi ).

Definition 2.5(Gudder, 2000). If (3, B) is a measurable space, aB-observable
on (Ä,A) is a mapX : B→ (Ä,A) such that

(1) X(3) = 1 and
(2) if Bi ∈ B are mutually disjoint, thenX(

⋃
Bi ) =

∑
X(Bi ) where the

convergence of the summation is pointwise.

Let B(R) denote theσ -algebra of all Borel subsets ofR. A B(R)-observable
on (Ä,A) is simply called anobservableon (Ä,A). For an observableX, if X(B)
is crisp for everyB ∈ B, thenX is calledcrisp.

Theorem 2.6(Gudder, 2000). If X : B→ E(Ä,A) is a B-observable, then
X has a unique extension to aσ -morphismX̃ : E(3, B)→ E(Ä,A). If Y : E(3,
B)→ E(Ä,A) is aσ -morphism, then Y| B is aB-observable.

In fact, if X : B→ E(Ä,A) is an observable, then the corresponding
σ -morphism X̃ : E(3, B)→ E(Ä,A) has the formX̃( f )(ω) := ∫ f (λ)µω(dλ),
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whereµω : B→ [0, 1] is the probability measure defined byµω(B) = X(B)(ω)
for everyB ∈ B.

3. OBSERVABLES

It should be noted that any random variableX̂ : Ä→ R generates a (crisp)

observableX : B(R)→ E(Ä,A) given byX(B) = X̂
−1

(B); i.e.,X(B) = I
X̂
−1

(B)
.

But the converse does not hold. However, we give in Theorem 3.2 below sufficient
conditions for a crisp observable to represent a random variable. We present here
some noncrisp observables.

Example 3.1. (1) For any noncrisp f ∈ E(Ä,A), define X f : B(R)→
E(Ä,A) by

X f (B) :=


0 if {0, 1} ∩ B = ∅
f if {0, 1} ∩ B = {1}
1− f if {0, 1} ∩ B = {0}
1 if {0, 1} ⊆ B.

ThenX f is a noncrisp observable.
(2) Let f, g be random variables on a measurable space (Ä,A), letλ ∈ (0, 1),

and letX f , Xg be the observables generated byf, g; i.e.,

X f (B) = I f −1(B), Xg(B) = Ig−1(B) ∀B ∈ B(R).

DefineY : B(R)→ E(Ä,A) by

Y(B) := λX f (B)+ (1− λ)Xg(B).

ThenY is an observable which is not crisp.

Theorem 3.2. If 3 is a separable metrizable space andB is theσ -algebra of all
Borel subsets of3, and X is a crispB-observable, then there exists a measurable
function f : Ä→ 3 such that X(B) = I f −1(B) for all B ∈ B.

Proof: SinceB is theσ -algebra generated by a separable metrizable topology
τ on3, there exists a metricρ on3 definingτ andτ is separable. Hence, there
exists a countable dense subsetD of 3. For eachn ∈ N, define

Bn :=
{

B : B = Uρ

(
d,

1

4n

)
, d ∈ D

}
,
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whereUρ(d, ε) denotes the open ball centered atd with radiusε. Then
⋃∞

n=k Bn,
k ∈ N is a base forτ . Fix ω ∈ Ä and define the measureµω on (3, B) by
µω(B) := X(B)(ω). Then construct a sequence of open balls as follows.

(1) Since3 =⋃Bi∈B1
Bi , we have

1= X(3)(ω) = X

( ⋃
Bi∈B1

Bi

)
(ω) ≤

∑
Bi∈B1

X(Bi )(ω).

Hence, asX is crisp, there existsBi1 ∈ B1 such thatX(Bi1)(ω) = 1. Let
A1 := Bi1.

(2) Similarly,Bi1 is open and
⋃∞

n=2Bn is a base forτ ; hence, it coversBi1. So
letting B′2 := {B ∈⋃∞n=2Bn: B ⊆ Bi1}, there existsBi2 ∈ B′2 such that
X(Bi2)(ω) = 1. Let A2 := Bi2.

(3) Continuing in the same fashion, we get a sequence of open balls{Ai } that
satisfiesAi+1 ⊆ Ai , X(Ai )(ω) = 1∀i ∈ N, andρ(a, b) ≤ 1

4i ∀a, b ∈ Ai .

Nowµω(
⋂∞

i=1 Ai ) = lim µω(Ai ) = 1. Hence (
⋂∞

i=1 Ai ) 6= ∅. In fact,
⋂∞

i=1 Ai is a
singleton subset of3 since ifγ1, γ2 ∈

⋂∞
i=1 Ai , γ1 6= γ2, andl := ρ(γ1, γ2), then

l > 0; so pickn ∈ N such thatl2 > 1
n . Since

⋂∞
i=1 Ai ⊆ An, we getρ(γ1, γ2) ≤

1
n < l

2, a contradiction. Thus∃γω ∈ 3 3
⋂

Ai = {γω}.
We have proved that∀ω ∈ Ä, ∃γω ∈ 3 such thatX({γω})(ω) = 1. Note that

such γω is unique with respect to the property thatX({γω})(ω) = 1, since if
there exist two such elementsγ1, γ2 ∈ 3 corresponding to the sameω, then 1≥
X({γ1, γ2})(ω) = X({γ1})(ω)+ X({γ2})(ω) = 2, a contradiction. Now definef :
Ä→ 3 such thatf (ω) = γω. Then f is measurable. To prove this, letB ∈ B. Then
f −1(B) = {ω: X(B)(ω) = 1}, since ifω ∈ f −1(B) for someω ∈ Ä then f (ω) ∈
B and henceX(B)(ω) ≥ X({ f (ω)})(ω) = 1. Thereforeω ∈ {ω: X(B)(ω) = 1}.
On the other hand, ifω ∈ {ω: X(B)(ω) = 1}, then f (ω) ∈ B since otherwise,
X(B ∪ { f (ω)}) = 2, a contradiction. Hencef −1(B) = {ω: X(B)(ω) = 1}, which
is measurable sinceX(B) is measurable.

To prove thatX(B) = I f −1(B) ∀B ∈ B, letω ∈ Ä. ThenX(B)(ω) is either 0
or 1 sinceX is crisp. Now ifX(B)(ω) = 0, thenω 6∈ f −1(B) and I f −1(B)(ω) = 0,
and if X(B)(ω) = 1, thenω ∈ f −1(B) and I f −1(B)(ω) = 1 . ¤

A separable topological space is calledPolish if there is a complete metric
defining its topology. Thus, as a consequence of the above theorem, we obtain the
following result, which appears in Bugajski (1998b).

Corollary 3.3 (Bugajski, 1998b). If 3 is a Polish space andB is theσ -algebra
of all Borel subsets of3, and X is a crispB-observable, then there exists a
measurable function f: Ä→ 3 such that X(B) = I f −1(B).
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The condition that the space3 be separable and metrizable in Theorem 3.2
is essential to identify crisp observables with random variables, as the following
example shows.

Example 3.4. Let3 be an uncountable set and letτ be the cocountable topology
on3. It is well known thatτ is neither separable nor metrizable. LetA be the
σ -algebra generated byτ . ThenA is the set of all subsets of3 that are either
countable or whose complements are countable. DefineX : A→ E(R, B(R)) by
X(B) := I∅ for a countableB ∈ A and X(B) := IR for an uncountableB ∈ A.
Although it can be easily checked thatX is a crisp observable, there is no random
variable that corresponds to it. Indeed, if there exists a measurable functionf :
R→ 3 such thatX(B) = I f −1(B) ∀B ∈ A, then f −1(B) is eitherR or ∅ ∀B ∈ A,
which implies thatf must be of the formf (ω) = c∀ω ∈ R for somec ∈ 3. Hence
X({c}) = IR, a contradiction.

Let (Ä,A), (31, B), (32, B′) be measurable spaces and letY : B→
E(32, B′) andX : B′ → E(Ä,A) be observables. In classical probability theory,
we can compose any two random variables easily under composition of functions.
In fuzzy probability theory, we can compose any two observablesX and Y if
they are thought of asσ -morphisms (Gudder, 1999). Doing this, we have theσ -
morphismX ◦ Y : E(31, B)→ E(Ä,A) which is identified with the observable
X ◦ Y : B→ E(Ä,A). We then have

(X ◦ Y)(B)(ω) = [ X̃(Y(B))](ω) =
∫

Y(B)(λ)µω(dλ) (3.1)

whereµω is the probability measure defined by the observableX, and X̃ is
the uniqueσ -morphism that extends the observableX to E(32, B′) as given in
Theorem 2.6.

4. JOINT OBSERVABLES

In this section, we continue to present some basic important facts about ob-
servables. The major result of this section is Theorem 4.8, which generalizes
Theorem 4.1 of Gudder (1998) and will be used in the next section in proving the
weak law of large numbers and the central limit theorem.

Definition 4.1(Gudder, 1998). Let (Ä,A) and (3, B) be measurable spaces. If
µ is a probability measure on (Ä,A) andX is aB-observable on (Ä,A), thenthe
distribution of Xis the probability measureµX onB given by

µX(B) := µ(X(B)).

Note thatµX(B) is interpreted as the probability thatX has a value inB when
the system is in the stateµ.
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Definition 4.2(Gudder, 1998). LetX be an observable on (Ä,A) and letu :
R→ R be a Borel function. We define

(1) the observableu(X) : B(R)→ E(Ä,A) by u(X)(B) = X(u−1(B)),
(2) theexpectationof X by E(X) = ∫ λµX(dλ), and
(3) thevarianceof X by

Var(X) = E(X2)− [E(X)]2 =
∫
λ2µX(dλ)−

[∫
λµX(dλ)

]2

.

Lemma 4.3 (Chebyshev; Gudder, 1998).Let X be an observable on a proba-
bility space(Ä,A, P) and u : R→ R be an increasing nonnegative function. If
u(λ◦) > 0, then

P(X ≥ λ◦) = P[X([λ◦,∞))] ≤ E(u(X))

u(λ◦)
.

Definition 4.4. Let X1, . . . , Xn be observables on (Ä,A). We say that aB(Rn)-
observableX on (Ä,A) is their joint observableif

πi (X) = Xi , i = 1, . . . , n,

whereπi is the marginal projection map. For finite collections of observables, we
have the following theorem.

Theorem 4.5(Gudder, 1998). If X1, . . . , Xn are observables on(Ä,A), then
there exists a unique n-dimensional observable Z on(Ä,A) such that for all
B1, . . . , Bn ∈ B(R),

Z(B1× · · · × Bn) = X1(B1) · · · Xn(Bn). (4.1)

Note that condition 4.1 is essential for the uniqueness of the joint observable
Z, as the following example indicates. This example can be found in Bugajski
(1996), and it has a direct connection to the quantum mechanical description of
spin-12 objects.

Example 4.6. Let Ä denote the set of points of the unit sphere inR3 and let
ω1, ω2 ∈ Ä. DefineB(R)-observablesXωi , i = 1, 2 on (Ä, B(Ä)) by

Xωi (B)(ω) :=


0 if 1

2 /∈ B,− 1
2 /∈ B

1
2(1+ rωi · rω) if 1

2 ∈ B,− 1
2 /∈ B

1
2(1− rωi · rω) if − 1

2 ∈ B, 1
2 /∈ B

1 if 1
2,− 1

2 ∈ B,
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whererω is the unit vector ofR3 pointing toω. Now define aB(R2)-observable
X on (Ä, B(Ä)) generated by

X

({(
1

2
,

1

2

)})
(ω) = λ(ω),

X

({(
1

2
,−1

2

)})
(ω) = 1

2

(
1+ rω1 · rω

)− λ(ω),

X

({(
−1

2
,

1

2

)})
(ω) = 1

2

(
1+ rω2 · rω

)− λ(ω),

X

({(
−1

2
,−1

2

)})
(ω) = λ(ω)− 1

2

(
rω1 + rω2

) · rω,

X

(
R2

∖{(
1

2
,

1

2

)
,

(
1

2
,−1

2

)
,

(
−1

2
,

1

2

)
,

(
−1

2
,−1

2

)})
(ω) = 0,

whereλ(ω) may be one of the following two functions:

(1) λ1(ω) = 1
4(1+ rω1 · rω)(1+ rω2 · rω).

(2) λ2(ω) = min{ 12(1+ rω1 · rω), 1
2(1+ rω2 · rω)}.

In each case,X is a joint observable ofXω1, Xω2. Hence we have two different
joint observables for the same observablesXω1, Xω2.

Definition 4.7(Gudder, 1998). LetX1, . . . , Xn be observables on a probability
space (Ä,A, P). Then the probability measureµX1,...,Xn onB(Rn) given by

µX1,...,Xn(B) := µZ(B) = P(Z(B)),

whereZ is given by Eq. (4.1), is called thejoint distributionof X1, . . . , Xn.

We now extend Theorem 4.5 to any collection of observables. But first we
need to establish some notation about infinite product of probability spaces. Let
{(Äα,Aα, µα): α ∈ 1} be a family of probability spaces andÄ =∏Äα. Recall
(see Bauer, 1981) that theproductσ -algebraU of theσ -algebras{Aα: α ∈ 1} is
the smallestσ -algebra onÄwith respect to which each of the projection mappings
πα is U-Aα-measurable. We denote the productσ -algebraU by

U =
⊗
α∈1
Aα.

By Theorem 5.4.2 of Bauer (1981), there exists a unique probability measureµ

onU such that

µ

(
n∏

i=1

Bαi ×
∏

α 6=α1,...,αn

Äα

)
= µα1

(
Bα1

) · · ·µαn(Bαn)
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for all Bαi ∈ Aαi , i = 1, . . . , n, and for alln ∈ N. The measureµ is called the
product measureof the probability measures{µα: α ∈ 1} and is denoted by

µ =
⊗
α∈1

µα.

Theorem 4.8. LetU be the productσ -algebra
⊗

α∈1 B(R) for some index set
1. If Xα, α ∈ 1 are observables on a measurable space(Ä,A), then there exists
a uniqueU-observable Z on(Ä,A) such that

(?) Z

(
n∏

i=1

Bαi ×
∏

α 6=α1,...,αn

Rα

)
= Xα1

(
Bα1

) · · · Xαn

(
Bαn

)
,

whereRα = R for all α ∈ 1.

Proof: Fix ω ∈ Ä. For eachα ∈ 1, define a probability measureµω,α onB(R)
by

µω,α(B) := Xα(B)(ω) ∀B ∈ B(R).

Then, by Theorem 5.4.2 of Bauer (1981), there exists a unique probability measure
µω :=⊗α∈1 µω,α, the product measure onU =⊗α∈1 B(R), such that for all
Bα1, . . . , Bαn ∈ B(R), we have

µω

(
n∏

i=1

Bαi ×
∏

α 6=α1,...,αn

Rα

)
= µω,α1

(
Bα1

) · · ·µω,αn

(
Bαn

)
. (4.2)

Now define a mappingZ : U → E(Ä,A) by Z(B)(ω) := µω(B)∀B ∈ U . To prove
that Z is an observable, we need to prove, first, thatZ(B) is an effect∀B ∈ U .
It is clear thatZ(B)(ω) ∈ [0, 1] ∀ω ∈ Ä. To prove thatZ(B) is measurable, let
B := {B ∈ U : Z(B) is measurable}, and let

S :=
{

n∏
i=1

Bαi ×
∏

α 6=α1,...,αn

Rα: Bαi ∈ B(R) for all α1, . . . , αn ∈ 1
}
.

It is well known thatS generatesU . We also have thatS ⊆ B. In fact, if B =∏n
i=1 Bαi ×

∏
α 6=α1,...,αn

Rα ∈ S, then we have from Eq. (4.2) that

Z(B)(ω) = µω(B) = µω,α1

(
Bα1

) · · ·µω,αn

(
Bαn

)
= Xα1

(
Bα1

)
(ω) · · · Xαn

(
Bαn

)
(ω).

But Xαi is measurable∀i = 1, . . . , n. HenceZ(B) is measurable. We also have
that if

B =
n∏

i=1

Bαi ×
∏

α 6=α1,...,αn

Rα, B′ =
m∏

i=1

Bα′i ×
∏

α 6=α′1,...,α′m

Rα ∈ S,
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then, by lettingJ = {α1, . . . , αn} ∪ {α′1, . . . , α′m}, we have

B ∩ B′ =
∏
α∈J

(πα(B) ∩ πα(B′))×
∏
α 6∈J

Rα ∈ S.

HenceS is∩-stable. Therefore, by Theorem 1.2.4 of Bauer (1981),

δ(S) = σ (S) = U , (4.3)

whereδ(S) denotes the Dynkin system generated byS andσ (S) denotes theσ -
algebra generated byS. ButB is a Dynkin system, since it satisfies the following:

(1) Z(
∏
α∈1 R) = 1.

(2) For B ∈ B, we haveZ(B) is measurable, hence, as

Z(Bc)(ω) = µω(Bc) = 1− µω(B) = 1− Z(B)(ω) ∀ω ∈ Ä,

it follows that Z(Bc) is measurable; thereforeBc ∈ B.
(3) Let Bi ∈ B be a pairwise disjoint sequence. Then for everyω ∈ Ä, we

have

Z
(⋃

Bi

)
(ω) = µω

(⋃
Bi

)
=
∑

µω(Bi )

=
∑

Z(Bi )(ω) = lim
n∑

i=1

Z(Bi )(ω), (4.4)

which shows thatZ(
⋃

Bi ) is measurable; hence
⋃

Bi ∈ B.
We conclude thatδ(S) ⊆ B. Then, from Eq. (4.3), we haveU ⊆ B. Hence

Z(B) is measurable for eachB ∈ U . We also have from (1) and Eq. (4.4) thatZ is
aU-observable. The uniqueness ofZ follows from the uniqueness of the product
measureµω. ¤

Definition 4.9. We say that

(1) f, g ∈ E(Ä,A) are independentif they are independent as random
variables;

(2) fi ∈ E(Ä,A) arepairwise independentif fi , f j are independent∀ i 6= j ;
(3) fi ∈ E(Ä,A) areindependentif they are (totally) independentas random

variables.

If f, g ∈ E(Ä,A) are independent andµ(g) 6= 0, then

µ( f g) = E( f g) = E( f )E(g) = µ( f )µ(g).

Definition 4.10. Following (Gudder, 1998), a sequenceXi of observables on a
probability space (Ä,A, P) is said to be (pairwise) independentif the sequence
Xi (Bi ) is (pairwise) independent for all possible choices of{Bi } in B(R).



P1: FOM/GGT P2: GDX

International Journal of Theoretical Physics [ijtp] pp442-ijtp-370731 April 8, 2002 16:25 Style file version Nov. 19th, 1999

On Fuzzy Probability Theory 801

It is clear that ifXi are (pairwise) independent observables andui : R→ R
are Borel functions, thenui (Xi ) are also (pairwise) independent.

Let X, Y be independent observables on (Ä,A, P), and letµX,Y be their
joint distribution. Then for everyB1, B2 ∈ B(R), we have

µX,Y(B1× B2) = P(X(B1)Y(B2)) = P(X(B1))P(Y(B2)) = µX(B1)µY(B2).

5. INFINITE SERIES OF OBSERVABLES

In this section we will show that certain theorems on infinite series of ob-
servables, namely, the weak and strong laws of large numbers and the central limit
theorem, are still valid in the fuzzy probability setting.

Proposition 5.1. Let X1, X2, . . . , be identically distributed and (pairwise) in-
dependent observables on a probability space(Ä,A, P) and let Z be their unique
joint observable as defined in Theorem4.8andµZ be the distribution of Z. Define
the random variables Yk on(

∏∞
i=1R,

⊗∞
i=1 B(R), µZ) by Yk((xi )∞i=1) = xk, k ∈ N.

Then Yi , i ∈ N, are identically distributed and (pairwise) independent.

Proof: Applying Theorem 4.8, we have

Z

(
n∏

i=1

Bαi ×
∏

α 6=α1,...,αn

Rα

)
= Xα1

(
Bα1

) · · · Xαn

(
Bαn

)
.

Hence∀n ∈ N, if B ∈ B(R) andµYn(Z) is the distribution ofYn, then

µYn(Z)(B) = µZ
(
Y−1

n (B)
) = P

(
Z

(
n−1∏
i=1

Ri × B×
∞∏

i=n+1

Ri

))
= P(Xn(B)) = µXn(B).

Hence∀n ∈ N, Yn andXn have the same distribution. As theXn’s are identically
distributed, so are theYn’s. We also have that theYn’s are independent since the
Xn’s are independent. In fact, sinceXi , i ∈ N, are independent, ifki ∈ N, Bki ∈
B(R), i = 1, . . . , n, then

µZ

(
n⋂

i=1

Y−1
ki

(
Bki

)) = P

(
Z

(
n∏

i=1

Bki ×
∏

k 6=k1,...,kn

Rk

))

= P

(
n∏

i=1

Xki

(
Bki

)) = E

(
n∏

i=1

Xki

(
Bki

))

=
n∏

i=1

E
(
Xki

(
Bki

)) = n∏
i=1

µXki

(
Bki

) = n∏
i=1

µYki (Z)
(
Bki

)
.

Similarly, if the Xi ’s are pairwise independent then so are theYn’s. ¤
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Corollary 5.2. Let X1, X2, . . . , be identically distributed and integrable observ-
ables on a probability space(Ä,A, P) and let Z and Y1, Y2, . . . , be as defined in
Proposition5.1.Then we have

(1) if X1, X2, . . . , are pairwise independent, then

1

n

n∑
i=1

(Yi − E(X1))

converges to0 in probability with respect to P, and
(2) if X1, X2, . . . , are independent, then

1

n

n∑
i=1

(Yi − E(X1))

converges to0 almost surely with respect to P.

Proof: Part (1) follows easily from Proposition 5.1 and the weak law of large
numbers in classical probability theory, and part (2) follows from Proposition 5.1
and the strong law of large numbers in classical probability theory.¤

In what follows we will denote by|Xn − X| the observableu(Z) generated
by the functionu : R2→ R defined byu((x, y)) = |x − y| on the joint observable
ZXn,X of Xn, X, whereZXn,X is uniquely determined by Eq. (4.1).

Definition 5.3(Gudder, 1998). LetX, Xn, n = 1, 2,. . . , be observables on (Ä,
A, P). We say thatXn converges to X in probabilityif for every ε > 0, we have

lim P(|Xn − X| ≥ ε) = lim P(|Xn − X|([ε,∞))) = 0.

Recall that ifX is an observable generated by a measurable functionf , then
X(B) = I f −1(B) ∀B ∈ B(R).

Lemma 5.4. Let Xn, Xc be observables on a probability space(Ä,A, P), where
Xc is generated by a constant function f= c onR and let Zn, n ∈ N, be their
joint observable as defined in Theorem4.5. Then for allε > 0 and all n∈ N,

|Xn − Xc|([ε,∞)) = Xn((−∞, c− ε] ∪ [c+ ε,∞)). (5.1)

Moreover, if for everyε > 0, limµXn((−∞, c− ε] ∪ [c+ ε,∞)) = 0, then Xn

converges to Xc in probability.

Proof: Let Zn be the joint observable ofXn, Xc as defined in Theorem 4.5 and
let u :R2→ R be defined byu((x, y)) := |x − y|. Then for everyε > 0,

(?) lim P(|Xn − Xc| ≥ ε) = lim P(u(Zn))([ε,∞))

= lim µZn(u
−1([ε,∞)))

= lim µZn({(x, y): x, y ∈ R, |x − y| ≥ ε}).
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Now sinceXc is the observable generated by a constant functionf = c, c ∈ R,
then forB ∈ B(R) andω ∈ Ä,

Xc(B)(ω) = I f −1(B)(ω) =
{

1 if c ∈ B,

0 otherwise.

Hence, forB1, B2 ∈ B(R) andω ∈ Ä, we have

Zn(B1× B2)(ω) = Xn(B1)(ω)Xc(B2)(ω) =
{

Xn(B1)(ω) if c ∈ B2,

0 otherwise.

Thus, ifB ∈ B(R2) andc 6∈ π2(B), thenµZn(B) = 0; hence, ifG = R× {c}, then
Zn(B ∩ Gc) = 0 and soZn(B) = Zn(B ∩ G). It follows that for everyε > 0 and
for everyn ∈ N, we have

|Xn − Xc|([ε,∞)) = Zn(({(x, y): |x − y| ≥ ε}) ∩ G)

= Zn({(x, c): |x − c| ≥ ε}) = Zn((x: |x − c| ≥ ε)× {c})
= Xn((−∞, c− ε] ∪ [c+ ε,∞)).

Hence, this and (?) yield that for everyε > 0,

lim P(|Xn − Xc|([ε,∞))) = lim P(Xn((−∞, c− ε] ∪ [c+ ε,∞))),

and therefore the second assertion of the lemma now follows.¤

In what follows we denote the observable|Xn − Xc|, as defined in the previous
lemma, by|X − c| for simplicity.

Theorem 5.5(Weak Law of Large Numbers).Let X1, X2, . . . , be a sequence
of integrable, identically distributed and pairwise independent observables on
a probability space(Ä,A, P) and let Sn = sn(Zn) where sn :Rn→ R is de-
fined by sn((x1, . . . , xn)) = 1

n (x1+ · · · + xn) and Zn is the unique joint observ-
able of X1, . . . , Xn, as defined in Theorem4.5. Then Sn converges to E(X1) in
probability.

Proof: Let X1, X2, . . . , be a sequence of integrable, identically distributed and
pairwise independent observables on (Ä,A, P) and letZ be their joint observ-
able. LetY1, Y2, . . . , be the random variables defined in Proposition 5.1. Then by
Corollary 5.2,

1

n

n∑
i=1

(Yi − E(X1))
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converges to 0 in probability with respect toP. Hence, for everyε > 0,

0 = lim µZ

({
x ∈

∞∏
i=1

R:

∣∣∣∣∣1n
n∑

i=1

Yi (x)− E(X1)

∣∣∣∣∣ ≥ ε
})

= lim P

(
Z

({
x ∈

∞∏
i=1

R:
1

n

n∑
i=1

Yi (x) 6∈ (E(X1)− ε, E(X1)+ ε)
}))

.

(5.2)

Now let B◦ := (−∞, E(X1)− ε] ∪ [E(X1)+ ε,∞). We claim that∀n ∈ N,

Sn(B◦) := Zn
(
S−1

n (B◦)
)

= Zn

({
(x1, . . . , xn) ∈ Rn:

1

n

n∑
i=1

xi ∈ B◦

})

= Z

({
x ∈

∞∏
i=1

R:
1

n

n∑
i=1

Yi (x) ∈ B◦

})
. (5.3)

To prove the claim, let

An =
{

(x1, . . . , xn) ∈ Rn:
1

n

n∑
i=1

xi ∈ B◦

}
,

Dn =
{

x ∈
∞∏

i=1

R:
1

n

n∑
i=1

Yi (x) ∈ B◦

}
.

Then it is clear thatDn = An ×
∏∞

i=n+1R. Since∀ω ∈ Ä, Zn(B)(ω), B ∈ B(Rn),
determines a measure, we have for alln ∈ N that

Zn(An)(ω) = inf

{ ∞∑
i=1

Zn(Ci )(ω): An ⊆
⋃

Ci , Ci

= Ci 1× · · · × Cin, Ci j ∈ B(R)

}

= inf

{ ∞∑
i=1

n∏
j=1

X j (Ci j )(ω): An ⊆
⋃

Ci , Ci

= Ci 1× · · · × Cin, Ci j ∈ B(R)

}
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= inf

{ ∞∑
i=1

n∏
j=1

X j (Ci j )(ω): Dn ⊆
⋃

C′i , C′i

=
n∏

j=1

Ci j ×
∞∏

j=n+1

R, Ci j ∈ B(R)

}
,

which is exactlyZ(Dn)(ω) according to Theorem 4.8. This proves the claim.
Hence, by Eq. (5.2) and (5.3), we have

lim µSn(B◦) = lim P(Sn(B◦))

= lim P

(
Z

({
x ∈

∞∏
i=1

R:
1

n

n∑
i=1

Yi (x) ∈ B◦

}))
= 0.

It follows from Lemma 5.4 thatSn converges toE(X1) in probability, as
desired. ¤

Notice that the observableSn of the above result is not identically distributed
with the observableS′n onB(R) defined byS′n(B) := 1

n

∑n
i=1 Xi (B). Indeed,∀B ∈

B(R) and∀n ∈ N, we have

S′n(B) = 1

n

n∑
i=1

Xi (B) = 1

n

n∑
i=1

X1(B) = X1(B);

henceS′n→ S′1 = X1, while Sn→ E(X1) in probability.

Definition 5.6. Let f1, f2, . . . , be a sequence of effects on (Ä,A). We define

lim supfn :=
∞⋂

k=1

∞⋃
n=k

fn.

Lemma 5.7 (Gudder, 1998). Let fn be a sequence of effects on(Ä,A, P).
Then

(1)
⋃

fn exists and is inE(Ä,A), and
⋃

fn 6= 1 iff
∑

fn < ∞,
(2) lim sup fn exists and is inE(Ä,A).

Lemma 5.8 (Borel–Cantelli Lemma; Gudder, 1998).Let fn be a sequence in
E(Ä,A) and let g= lim sup fn.

(1) If
∑

P( fn) < ∞, then P(g) = 0.
(2) If

∑
P( fn) = ∞ and the fn are independent, then P(g) = 1.
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Definition 5.9(Gudder, 1998). LetX, Xn, n = 1, 2,. . . , be observables on (Ä,
A, P). We say thatXn converges to X almost surelyif for every ε > 0, we have

P[lim sup(|Xn − X| ≥ ε)] = P[lim sup(|Xn − X|([ε,∞)))] = 0.

Recall that

lim sup(|Xn − X|([ε,∞))) =
∞∏

k=1

(
1−

∏
n≥k

[1− (|Xn − X|([ε,∞)))]

)
.

Lemma 5.10(Gudder, 1998). If Xn is a sequence of independent observables
on (Ä,A, P), c ∈ R, and Xn converges to c almost surely, then Xn converges to
c in probability.

The question about the validity of the strong law of large numbers in the
setting of fuzzy probability theory still needs an answer. In fact, we can weaken the
definition of almost everywhere convergence for a sequence of observables in fuzzy
probability theory which is what we will call almost everywhere∗ convergence of
a sequence of observables. Then we prove our version of the strong law of large
numbers according to this definition (see Theorem 5.14 below).

Definition 5.11. Let X, Xn, n = 1, 2,. . . , be observables on (Ä,A, P). We say
that Xn converges toX almost everywhere∗ if ∀ ε > 0,

lim P

(
sup
k≥n
|Xk − X|([ε,∞))

)
= 0

where the supremum is defined as in the usual sense for sequences of functions.

Remark 5.12. The two definitions of almost everywhere convergence and almost
everywhere∗ convergence coincide for crisp observables and hence in the usual case
of random variables. But they are not equivalent in general. In fact, the concept of
almost everywhere convergence has a very strong condition. To see this, suppose
that Xn is a sequence of observables that converges almost everywhere to the
observableX. Then∀ ε > 0, we have∫ ∏

n

(
1−

∏
k≥n

(1− |Xk − X|([ε,∞)))

)
d P = 0,

which implies that∃A ∈ A such thatP(A) = 1 and∀ω ∈ A,

∏
n

(
1−

∏
k≥n

(1− |Xk − X|([ε,∞)))

)
(ω) = 0.
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Hence, by the theory of infinite products,∀ω ∈ A, we have∑
n

∏
k≥n

(1− |Xk − X|([ε,∞)))(ω) = ∞ ∀ω ∈ A.

Then∀ω ∈ Ä, ∃nω ∈ N such that
∏

k≥nω
(1− |Xk − X|([ε,∞)))(ω) 6= 0. Again,

by the theory of infinite products,∀ω ∈ A, we then have∑
k≥nω

|Xk − X|([ε,∞))(ω) < ∞.

Hence,∀ω ∈ A, we have
∞∑

n=1

|Xn − X|([ε,∞))(ω) < ∞, (5.4)

which is a very strong condition. Moreover,∀ω ∈ A, it leads to

lim sup|Xn − X|([ε,∞))(ω) = 0;

and henceXn converges almost everywhere∗ to X. Thus the definition of almost ev-
erywhere convergence implies the definition of almost everywhere∗ convergence.

The following example shows that the two definitions of almost everywhere
convergence and almost everywhere∗ convergence are not equivalent.

Example 5.13. Let (Ä,A) = (R, B, (R)) and letP be any probability measure
onB(R). Define a sequence of observablesXn on (Ä,A, P) by

Xn(B)(ω) :=


0 if 0 /∈ B, 1 /∈ B,
1
n if 1 ∈ B, 0 /∈ B,

1− 1
n if 1 /∈ B, 0 ∈ B,

1 otherwise.

Let X be the observable generated by the random variablef : Ä→ R such that
f (ω) = 0 ∀ω ∈ Ä. ThenXn converges toX almost everywhere∗. To see this, let
ε > 0 be given. Then, by Lemma 5.4,

|Xn − X|([ε,∞)) = Xn((−∞,−ε] ∪ [ε,∞)) = 1

n
.

Hence,P(infn supk≥n|Xk − X|([ε,∞))) = 0. But Xn does not converge toX al-
most everywhere. To see this, suppose on the contrary thatXn converges toX
almost everywhere. Then by Inequality 5.4,∃A ∈ A such thatP(A) = 1 and such
that∀ω ∈ A, we have

∞∑
n=1

|Xn − X|([ε,∞))(ω) < ∞.
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But,∀ω ∈ A, we have

∞∑
n=1

|Xn − X|([ε,∞))(ω) =
∞∑

n=1

1

n
= ∞,

a contradiction.

Now we will prove our version of the strong law of large numbers according
to the definition of almost everywhere∗ convergence.

Theorem 5.14(Strong Law of Large Numbers).Let X1, X2, . . . , be a sequence
of integrable, identically distributed and independent observables on(Ä,A, P)
and let Sn = sn(Zn) where sn : Rn→ R is defined by sn((x1, . . . , xn)) = 1

n (x1+
· · · + xn) and Zn is the unique joint observable of X1, . . . , Xn, as defined in
Theorem4.5.Then Sn converges to E(X1) almost everywhere∗.

Proof: Define the joint observableZ of X1, X2, . . .as in the proof of Theorem 5.5
(Weak Law of Large Numbers). And follow the proof to get the sequence
Y1, Y2, . . . , of identically distributed random variables on (

∏∞
i=1R,

⊗∞
i=1B(R),

µZ) with expectationm. Then, by Proposition 5.1,Y1, Y2, . . . , are also independent
and identically distributed. Hence, by Corollary 5.2, we have

1

n

n∑
i=1

(Yi − E(Xi )),

which converges to 0 almost surely with respect toP. Let m= E(X1). Then for
everyε > 0 we have that

µZ

(
lim sup

{
x ∈

∞∏
j=1

R:

∣∣∣∣∣1n
n∑

i=1

Yi (x)−m

∣∣∣∣∣ ≥ ε
})
= 0.

Hence,

0 = µZ

( ∞⋂
n=1

∞⋃
k=n

{
x ∈

∞∏
j=1

R:

∣∣∣∣∣1k
k∑

i=1

Yi (x)−m

∣∣∣∣∣ ≥ ε
})

= P

(
Z

( ∞⋂
n=1

∞⋃
k=n

{
x ∈

∞∏
j=1

R:
1

k

k∑
i=1

Yi (x)

∈ (−∞, m− ε] ∪ [m+ ε,∞)

}))
.
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Now letω ∈ Ä. Then by Eq. (5.3),

Z

( ∞⋂
n=1

∞⋃
k=n

{
x ∈

∞∏
j=1

R:
1

k

k∑
i=1

Yi (x) ∈ (−∞, m− ε] ∪ [m+ ε,∞)

})
(ω)

= lim Z

( ∞⋃
k=n

{
x ∈

∞∏
j=1

R:
1

k

k∑
i=1

Yi (x) ∈ (−∞, m− ε] ∪ [m+ ε,∞)

})
(ω)

≥ lim
n

sup
k≥n

Z

({
x ∈

∞∏
j=1

R:
1

n

n∑
i=1

Yi (x) ∈ (−∞, m− ε] ∪ [m+ ε,∞)

})
(ω)

= lim
n

sup
k≥n

Zk

({
x ∈

k∏
j=1

R: sk(x) ∈ (−∞, m− ε] ∪ [m+ ε,∞)

})
(ω).

Hence,

P

(
lim

n
sup
k≥n

Zk

({
x ∈

k∏
j=1

R: sk(x) ∈ (−∞, m− ε] ∪ [m+ ε,∞)

}))

≤ µZ

( ∞⋂
n=1

∞⋃
k=n

{
x ∈

∞∏
j=1

R:

∣∣∣∣∣1k
k∑

i=1

Yi (x)−m

∣∣∣∣∣ ≥ ε
})
= 0,

and, therefore, the strong law of large numbers holds.¤

Theorem 5.15(Central Limit Theorem). Let Xn be a sequence of independent,
identically distributed observables with expectation zero and varianceσ 2 > 0. Let
Sn = sn(Zn) where sn : Rn→ R is defined by sn((x1, . . . , xn)) = 1

σ
√

n
(x1+ · · · +

xn) and Zn is the unique joint observable of X1, . . . , Xn, as defined in Theorem4.5.
Letµn be the distribution of Sn. Thenµn converges weakly toµσ ,whereµσ denotes
the normal distribution with expectation0 and variance1.

Proof: Following the proof of Theorem 5.5 (Weak Law of Large Numbers), we
construct the sequence of independent, identically distributed random variablesYi

of expectation zero and varianceσ 2. For eachn ∈ N, let Tn = 1
σ
√

n
(Y1+ · · · + Yn)

and letµ′n denote the distribution ofTn. Then by central limit theorem in classical
probability theory, we haveµ′n converges weakly to the normal distribution of
expectation 0 and variance 1. Now by a similar proof to Eq. (5.3), we can get
∀B ∈ B(R) that

Sn(B) := Zn
(
s−1
n (B)

) = Zn

({
(x1, . . . , xn) ∈ Rn:

1

σ
√

n

n∑
i=1

xi ∈ B

})
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= Z

({
x ∈

∞∏
i=1

R:
1

σ
√

n

n∑
i=1

Yi (x) ∈ B

})
= Z

(
T−1

n (B)
)
.

Then,∀B ∈ B(R), we have

µn(B) = P(Sn(B)) = P
(
Z
(
T−1

n (B)
)) = µZ

(
T−1

n (B)
) = µ′(B).

Hence,µn andµ′n are also identically distributed, and thereforeµn converges
weakly to the normal distribution with expectation 0 and variance 1.¤
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